

Document No. NISM/EV-PH/04 SEPTEMBER 2015

evolution

EV-PH ANALOGUE ADDRESSABLE COMBINED PHOTOELECTRIC AND HEAT SENSOR INSTRUCTION MANUAL

LPCB REF: 041g/01 and 842b/01

Quality System Certificate No. 041 Assessed to BS EN ISO 9001:2008

Hipley Street, Old Woking, Surrey, England, GU22 9LQ. UK

Tel: +44 (0) 1483 769555 Fax: +44 (0) 1483 756686 Web Site: www.nittan.co.uk E-mail: sales@nittan.co.uk

EV-PH ANALOGUE ADDRESSABLE COMBINED PHOTOELECTRIC SMOKE AND HEAT SENSOR INSTRUCTION MANUAL Ref No: NISM/EV-PH/04

DATE:

SEPTEMBER 2015
PAGE: ISSUE:

1 of **6 04**

evolution.....

The **EV-PH** advanced analogue addressable combined photoelectric and heat sensor forms part of a brand new range of analogue addressable fire sensors from Nittan UK called **evolution**.

The **EV-PH** together with the **EV-H**, **EV-P**, and **EV-DP** are all elegantly designed, low profile fire sensors which are aesthetically pleasing, thus enabling them to blend unobtrusively into modern working environments.

The evolution analogue addressable range all feature the very latest technological advancements such as ASIC design, increasing reliability and performance.

evolution.....

- BRINGING STYLE INTO FIRE DETECTION SYSTEMS

EV-PH ANALOGUE ADDRESSABLE COMBINED PHOTOELECTRIC SMOKE AND HEAT SENSOR INSTRUCTION MANUAL Ref No:

NISM/EV-PH/04

DATE:

SEPTEMBER 2015

PAGE:

ISSUE:

2 of **6**

04

CONTENTS:-

Section 12 -

Section 1	-	Introduction	- Page 2
Section 2	-	Sensor Models	- Page 2
Section 3	-	Base Models	- Page 2
Section 4	-	Installation	- Page 3
Section 5	-	Maintenance & Cleaning	- Page 3
Section 6	-	Specifications	- Page 4
Section 7	-	Environmental Parameters: Temperature - Humidity	- Page 4 - Page 4 - Page 4
Section 8	-	EMC	- Page 5
Section 9	-	Address Setting	- Page 5
Section 10	-	Connections	- Page 6
Section 11	-	Dimensions	- Page 6

Heat Response Graph

- Page 7

Section 1 - INTRODUCTION

The EV-PH is an attractively-styled, low profile combined photoelectric and heat sensor for use with Nittan 'evolution' protocol control panels.

EV-PH features:

- *Low profile, stylish appearance
- *Soft addressing
- * Low monitoring current
- * Supplied with protective dust cover
- * Patented OMNIVIEW™ 360° LED fire alarm indicator
- * Remote indicator output
- * 'Base Control' auxiliary output
- * Compatible with UB-6-EV and STB-4SE-EV bases
- *Non-polarised terminals
- * Optical sensor, detecting visible particles of combustion
- * Heat sensor, detecting rate of rise of temperature
- * Room temperature information can be separately taken

Section 2 - SENSOR MODELS

The EV-PH combined photoelectric and heat sensor has two terminals for connection onto the two wire loop. The remaining terminals provide a switched current sink function which operates when the sensor goes into alarm condition, suitable for the operation of an auxiliary function such as a remote indicator. Terminal 3 (RIL) is limited to 3mA. Terminal 2 (Base Control) is not current limited.

Section 3 - BASE MODELS

A variety of bases are available for use with the EV-PH sensor. It is important to use the correct base for each application. The available base models are:

i) UB-4 base: for standard use with EV-PH series combined sensor.

ii) **UB-6-EV base:** for standard use with EV-PH series combined sensor.

iii) STB-4SE-EV base: Similar to STB-4-EV base, except deeper.

EV-PH ANALOGUE ADDRESSABLE COMBINED PHOTOELECTRIC SMOKE AND HEAT SENSOR INSTRUCTION MANUAL Ref No:

NISM/EV-PH/04

DATE:

SEPTEMBER 2015

PAGE:

ISSUE:

3 of **6**

04

Section 4 - INSTALLATION

In normal use, the EV-PH combined sensor will be installed at ceiling level. Pass the field wiring through the cable hole in the centre and from the rear of the base. Offer up and affix the base to the ceiling or conduit fitting with screws via the base mounting holes. Connect the field wiring to the base terminals, as detailed on page 6 making sure the wiring does not obstruct fitting of the sensor head. Fit the sensor head by inserting it into the base and turning clockwise until the notch in the sensor's rim aligns with base locking screw. The OMNIVIEW™ 360° LED alarm indicator permits visibility from any angle.

Note: The address must be set before the sensor is fitted into place.

Fit the plastic dust cover supplied over the sensor to keep out dust etc, until the system is commissioned. If the dust cover is not fitted and the environment is slightly dusty, such as when building work is being completed, for example, problems of false alarms are likely to occur after commissioning unless cleaning of the sensor is undertaken. At commissioning, the dust cover should be removed and discarded.

NOTE: THE PLASTIC DUST COVER MUST BE RE-MOVED FROM THE SENSOR IN ORDER FOR THE SENSOR TO FUNCTION CORRECTLY.

<u>Section 5 - MAINTENANCE AND</u> CLEANING

Maintenance:

The EV-PH sensor is a high quality product engineered for reliability. If proper preventative maintenance is not carried out, there is a likelihood of malfunction, including false alarms.

Servicing:

Servicing of the system should be carried out in accordance with the requirements of BS 5830 Part 1, Fire Detection and Alarm Systems for Buildings: Code of Practice for System Design, Installation and Servicing.

The maintenance procedures described below, should be conducted with the following frequency:

One month after installation: Routine Inspection and

every 3 months after.

Every 6 months: Operational Test.

Every 12 months: Functional Test and

Cleaning.

All above frequencies of maintenance are dependent on installation conditions.

Routine Inspection

i) Ensure the sensor head is secure and undamaged. ii) Check the heat and smoke entry apertures are in no way obstructed.

iii) Ensure that the surface of the sensor's outer cover is clean. If there are deposits due to the presence of oil vapour, dust etc, then the sensor should be cleaned in accordance with the cleaning instructions detailed later in this manual. It may be advisable to ensure that such cleaning is conducted regularly in future.

iv) Ensure that no equipment which may generate excessive heat has been installed in the vicinity of the sensor since the last routine inspection. If such equipment has been installed, then you should notify the Fire Safety Officer or other competent authority that its presence may cause false alarms.

v) Ensure no equipment which may generate combustion products or fine airborne particles has been installed in the vicinity of the sensor since the last routine inspection. If such equipment has been installed, then you should notify the Fire Safety Officer or other competent authority that its presence may cause false alarms.

Operational Test

The purpose of the Operational Test is to confirm the sensor's correct operation in response to a smoke and/or heat condition.

Note: When carrying out site testing of Analogue Addressable Evolution sensors, the CIE shall be set to test mode prior to beginning the tests.

i) Take any necessary precautions at the control panel to limit the sounding of the alarm sounders/bells and any fire service summoning device.

ii) Test the heat sensor with heat from a warm air gun designed for heat sensor testing (e.g. 'No Climb - Solo' heat sensor tester). Check that the sensor gives an alarm condition within 10-20 seconds depending upon the sensor grade and the applied air temperature. Check that the LED indicator on the sensor illuminates.

N.B. Hot air blowers sold for paint stripping, soldering pipes etc. generate sufficient heat to damage the sensor and should not be used for testing heat sensors.

iii) After the sensor has given the alarm condition, reset the sensor from the control panel. It may be necessary to allow a short time to elapse before resetting the sensor, to allow any residual heat from the test to disperse.

EV-PH ANALOGUE ADDRESSABLE COMBINED PHOTOELECTRIC SMOKE AND HEAT SENSOR INSTRUCTION MANUAL Ref No: NISM/EV-PH/04

DATE:

SEPTEMBER 2015

PAGE: ISSUE:

4 of 6 04

iv) Before proceeding to the next sensor, ensure that the sensor just tested does not re-operate due to the presence of residual heat.

- v) To test the optical sensor, introduce a discrete amount of smoke into the detector head, e.g. using a 'No Climb Solo' smoke test head. Check that the sensor gives an alarm condition within 15 seconds. Check the LED indicator on the EV-PH sensor illuminates and any remote indicator LED fitted also illuminates.
- vi) After the sensor has given the alarm condition, reset the sensor from the control panel. It may be necessary to allow a short time to elapse before resetting the sensor, to allow any residual smoke from the test to disperse.
- **vii)** Before proceeding to the next sensor, ensure that the sensor previously tested does not re-operate due to the presence of residual smoke.

Functional Tests:

The functional test checks the sensors operation. These detectors may be returned to our factory for Functional Testing.

Cleaning:

Note: The sensor head should NOT be disassembled.

- i) Carefully remove the sensor from its base.
- *ii)* Use a soft, lint-free cloth, moistened with alcohol for sticky deposits, to clean the plastic cover.
- *iii)* Using a <u>soft bristle brush (e.g. an artists paintbrush)</u> carefully brush between the vanes and thermistor in a linear motion away from the apertures on the plastic case.
- *iv)* Ensure that no debris is left on or around the thermistor once cleaning is complete.
- v) If the unit needs further cleaning or is damaged or corroded, please return the complete detector to Nittan UK. for service.

Section 6 - SPECIFICATIONS

Model Reference: - EV-PH

Computer Reference: - F20N82400

Sensor Type: Thermistor of low

thermal mass Optical smoke

sensor

Sensitivity: - 2 levels can be

selectable for smoke and rate of rise for heat.

Operating Current: - 200×amps

fire alarm (LED on)

5.2mA

Sensitivity: - EN54 Part 5:2000

& Part 7:2000

Mass: - 118g (excluding base)

Charging Time: - 20 seconds

Ambient Temperature

Range: - -10 °C to +55 °C

IPRating: - 41

<u>Section 7 - ENVIRONMENTAL</u> PARAMETERS

Temperature Considerations:

Over the range from -10 °C to +55 °C.

Humidity:

Relative Humidity of up to 95%, measured at 50 deg. C., non condensing.

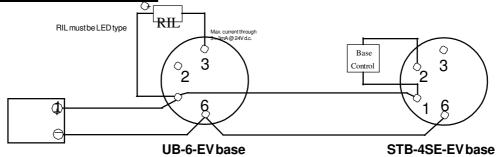
Section 8 - EMC

Installation

The installation shall be in accordance with the regulations either of the approval body for an approved system, or otherwise, to the national code of practice/regulations for the installation of the fire alarm system, e.g. BS 5839 part 1.

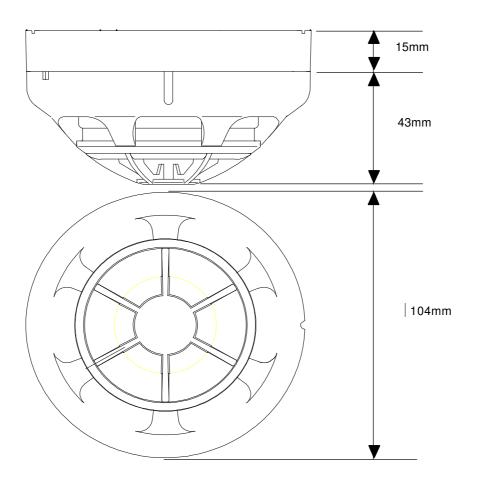
Electromagnetic Compatibility (EMC)

On a site where there is an unusually high level of potential electrical interference, e.g. where heavy currents are being switched or where high levels of R.F. are prevalent, care then must be taken in the type and routing of cables. Particular care should be given to the separation of zone wiring from the cable carrying the interference.


EV-PH ANALOGUE ADDRESSABLE COMBINED PHOTOELECTRIC SMOKE AND HEAT SENSOR INSTRUCTION MANUAL Ref No: NISM/EV-PH/04
DATE:

SEPTEMBER 2015

PAGE: ISSUE:

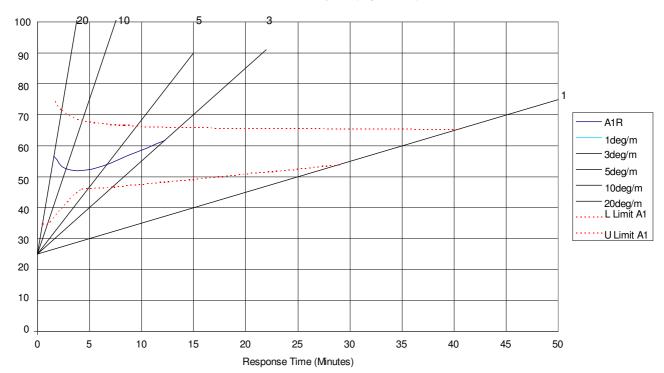

5 of **6 04**

Section 10 - CONNECTIONS

Auxiliary terminal RIL current limited to 3mA. Base control is not current limited as the auxiliary equipment provides the limiting. If the +ve supply for the auxiliary equipment is taken from the EV loop, care must be taken to not cause corruption of the EV protocol by excessive current draw.

Section 11 - DIMENSIONS

EV-PH ANALOGUE ADDRESSABLE COMBINED PHOTOELECTRIC SMOKE AND HEAT SENSOR INSTRUCTION MANUAL Ref No: **NISM/EV-PH/04**


DATE: SEPTEMBER 2015

PAGE: ISSUE:

6 of 6 04

Section 12 - HEAT RESPONSE GRAPH

EV-PH Rate of Rise Response (degree C/Min)

